395 research outputs found

    Misregulated E-Cadherin Expression Associated with an Aggressive Brain Tumor Phenotype

    Get PDF
    BACKGROUND: Cadherins are essential components of the adherens junction complexes that mediate cell-cell adhesion and regulate cell motility. During tissue morphogenesis, changes in cadherin expression (known as cadherin switching) are a common mechanism for altering cell fate. Cadherin switching is also common during epithelial tumor progression, where it is thought to promote tumor invasion and metastasis. E-cadherin is the predominant cadherin expressed in epithelial tissues, but its expression is very limited in normal brain. METHODOLOGY/PRINCIPAL FINDINGS: We identified E-cadherin expression in a retrospective series of glioblastomas exhibiting epithelial or pseudoepithelial differentiation. Unlike in epithelial tissues, E-cadherin expression in gliomas correlated with an unfavorable clinical outcome. Western blotting of two panels of human GBM cell lines propagated either as xenografts in nude mice or grown under conventional cell culture conditions confirmed that E-cadherin expression is rare. However, a small number of xenograft lines did express E-cadherin, its expression correlating with increased invasiveness when the cells were implanted orthotopically in mouse brain. In the conventionally cultured SF767 glioma cell line, E-cadherin expression was localized throughout the plasma membrane rather than being restricted to areas of cell-cell contact. ShRNA knockdown of E-cadherin in these cells resulted in decreased proliferation and migration in vitro. CONCLUSIONS/SIGNIFICANCE: Our data shows an unexpected correlation between the abnormal expression of E-cadherin in a subset of GBM tumor cells and the growth and migration of this aggressive brain tumor subtype

    Increased 5-hydroxymethylcytosine and decreased 5-methylcytosine are indicators of global epigenetic dysregulation in diffuse intrinsic pontine glioma

    Get PDF
    Introduction Diffuse intrinsic pontine glioma (DIPG) is a malignant pediatric brain tumor associated with dismal outcome. Recent high-throughput molecular studies have shown a high frequency of mutations in histone-encoding genes (H3F3A and HIST1B) and distinctive epigenetic alterations in these tumors. Epigenetic alterations described in DIPG include global DNA hypomethylation. In addition to the generally repressive methylcytosine DNA alteration, 5-hydroxymethylation of cytosine (5hmC) is recognized as an epigenetic mark associated with active chromatin. We hypothesized that in addition to alterations in DNA methylation, that there would be changes in 5hmC. To test this hypothesis, we performed immunohistochemical studies to compare epigenetic alterations in DIPG to extrapontine adult and pediatric glioblastoma (GBM) and normal brain. A total of 124 tumors were scored for histone 3 lysine 27 trimethylation (H3K27me3) and histone 3 lysine 9 trimethylation (H3K9me3) and 104 for 5hmC and 5-methylcytosine (5mC). An H-score was derived by multiplying intensity (0–2) by percentage of positive tumor nuclei (0-100%). Results We identified decreased H3K27me3 in the DIPG cohort compared to pediatric GBM (p \u3c 0.01), adult GBM (p \u3c 0.0001) and normal brain (p \u3c 0.0001). H3K9me3 was not significantly different between tumor types. Global DNA methylation as measured by 5mC levels were significantly lower in DIPG compared to pediatric GBM (p \u3c 0.001), adult GBM (p \u3c 0.01), and normal brain (p \u3c 0.01). Conversely, 5hmC levels were significantly higher in DIPG compared to pediatric GBM (p \u3c 0.0001) and adult GBM (p \u3c 0.0001). Additionally, in an independent set of DIPG tumor samples, TET1 andTET3 mRNAs were found to be overexpressed relative to matched normal brain. Conclusions Our findings extend the immunohistochemical study of epigenetic alterations in archival tissue to DIPG specimens. Low H3K27me3, decreased 5mC and increased 5hmC are characteristic of DIPG in comparison with extrapontine GBM. In DIPG, the relative imbalance of 5mC compared to 5hmC may represent an opportunity for therapeutic intervention

    Histopathologic findings in malignant peripheral nerve sheath tumor predict response to radiotherapy and overall survival

    Get PDF
    BACKGROUND: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive and poorly understood malignant neoplasm. Even in the setting of multimodal therapy, the clinical course of MPNST is frequently marked by metastatic conversion and poor overall prognosis, with optimal treatment paradigms for this rare tumor unknown. METHODS: We reviewed the medical records and histopathology of 54 consecutive patients who were treated at University of California San Francisco between 1990 and 2018. RESULTS: Our cohort consisted of 24 male and 30 female patients (median age 38 years). Fédération Nationale des Centres de Lutte Contre Le Cancer (FNCLCC) sarcoma grading criteria segregated patients into groups with differences in overall survival (OS) ( CONCLUSIONS: Our results lend support to the FNCLCC sarcoma grading criteria as a prognostic scheme for MPNST, although few cases of grade 1 were included. Further, we identify increased Ki-67 labeling as a strong predictor of poor OS from MPNST. Finally, we identify a subset of MPNSTs with a predictive immunohistochemical profile that has improved local control with adjuvant radiotherapy. These data provide insights into the grading and therapy for patients with MPNST, although further studies are needed for independent validation

    Human induced pluripotent stem cell engineering establishes a humanized mouse platform for pediatric low-grade glioma modeling

    Get PDF
    A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors

    Alternative lengthening of telomeres, ATRX loss and H3â K27M mutations in histologically defined pilocytic astrocytoma with anaplasia

    Full text link
    Anaplasia may be identified in a subset of tumors with a presumed pilocytic astrocytoma (PA) component or piloid features, which may be associated with aggressive behavior, but the biologic basis of this change remains unclear. Fiftyâ seven resections from 36 patients (23 M, 13 F, mean age 32 years, range 3â 75) were included. A clinical diagnosis of NF1 was present in 8 (22%). Alternative lengthening of telomeres (ALT) was assessed by telomereâ specific FISH and/or CISH. A combination of immunohistochemistry, DNA sequencing and FISH were used to study BRAF, ATRX, CDKN2A/p16, mutant IDH1 p.R132H and H3â K27M proteins. ALT was present in 25 (69%) cases and ATRX loss in 20 (57%), mostly in the expected association of ALT+/ATRXâ (20/24, 83%) or ALTâ /ATRX+ (11/11, 100%). BRAF duplication was present in 8 (of 26) (31%). H3â K27M was present in 5 of 32 (16%) cases, all with concurrent ATRX loss and ALT. ALT was also present in 9 (of 11) cases in the benign PA precursor, 7 of which also had ATRX loss in both the precursor and the anaplastic tumor. In a single pediatric case, ALT and ATRX loss developed in the anaplastic component only, and in another adult case, ALT was present in the PAâ A component only, but ATRX was not tested. Features associated with worse prognosis included subtotal resection, adult vs. pediatric, presence of a PA precursor preceding a diagnosis of anaplasia, necrosis, presence of ALT and ATRX expression loss. ALT and ATRX loss, as well as alterations involving the MAPK pathway, are frequent in PA with anaplasia at the time of development of anaplasia or in their precursors. Additionally, a small subset of PA with anaplasia have H3â K27M mutations. These findings further support the concept that PA with anaplasia is a neoplasm with heterogeneous genetic features and alterations typical of both PA and diffuse gliomas.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147190/1/bpa12646_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147190/2/bpa12646.pd

    Molecular clarification of brainstem astroblastoma with EWSR1-BEND2 fusion in a 38-year-old man

    Get PDF
    The majority of astroblastoma occur in a cerebral location in children and young adults. Here we describe the unusual case of a 38-year-old man found to have a rapidly growing cystic enhancing circumscribed brainstem tumor with high grade histopathology classified as astroblastoma, MN1-altered by methylome profiling. He was treated with chemoradiation and temozolomide followed by adjuvant temozolomide without progression to date over one year from treatment initiation. Astroblastoma most frequently contain a MN1-BEND2 fusion, while in this case a rare EWSR1-BEND2 fusion was identified. Only a few such fusions have been reported, mostly in the brainstem and spinal cord, and they suggest that BEND2, rather than MN1, may have a more critical functional role, at least in these regions. This unusual clinical scenario exemplifies the utility of methylome profiling and assessment of gene fusions in tumors of the central nervous system

    Epigenetic Transcriptional Regulation of the Growth Arrest-Specific gene 1 (Gas1) in Hepatic Cell Proliferation at Mononucleosomal Resolution

    Get PDF
    BACKGROUND: Gas1 (growth arrest-specific 1) gene is known to inhibit cell proliferation in a variety of models, but its possible implication in regulating quiescence in adult tissues has not been examined to date. The knowledge of how Gas1 is regulated in quiescence may contribute to understand the deregulation occurring in neoplastic diseases. METHODOLOGY/PRINCIPAL FINDINGS: Gas1 expression has been studied in quiescent murine liver and during the naturally synchronized cell proliferation after partial hepatectomy. Chromatin immunoprecipitation at nucleosomal resolution (Nuc-ChIP) has been used to carry out the study preserving the in vivo conditions. Transcription has been assessed at real time by quantifying the presence of RNA polymerase II in coding regions (RNApol-ChIP). It has been found that Gas1 is expressed not only in quiescent liver but also at the cell cycle G(1)/S transition. The latter expression peak had not been previously reported. Two nucleosomes, flanking a nucleosome-free region, are positioned close to the transcription start site. Both nucleosomes slide in going from the active to the inactive state and vice versa. Nuc-ChIP analysis of the acquisition of histone epigenetic marks show distinctive features in both active states: H3K9ac and H3K4me2 are characteristic of transcription in G(0) and H4R3me2 in G(1)/S transition. Sequential-ChIP analysis revealed that the "repressing" mark H3K9me2 colocalize with several "activating" marks at nucleosome N-1 when Gas1 is actively transcribed suggesting a greater plasticity of epigenetic marks than proposed until now. The recruitment of chromatin-remodeling or modifying complexes also displayed distinct characteristics in quiescence and the G(1)/S transition. CONCLUSIONS/SIGNIFICANCE: The finding that Gas1 is transcribed at the G(1)/S transition suggests that the gene may exert a novel function during cell proliferation. Transcription of this gene is modulated by specific "activating" and "repressing" epigenetic marks, and by chromatin remodeling and histone modifying complexes recruitment, at specific nucleosomes in Gas1 promoter

    Surgeons' perspectives on artificial intelligence to support clinical decision-making in trauma and emergency contexts: results from an international survey

    Get PDF
    Background Artificial intelligence (AI) is gaining traction in medicine and surgery. AI-based applications can offer tools to examine high-volume data to inform predictive analytics that supports complex decision-making processes. Time-sensitive trauma and emergency contexts are often challenging. The study aims to investigate trauma and emergency surgeons’ knowledge and perception of using AI-based tools in clinical decision-making processes. Methods An online survey grounded on literature regarding AI-enabled surgical decision-making aids was created by a multidisciplinary committee and endorsed by the World Society of Emergency Surgery (WSES). The survey was advertised to 917 WSES members through the society’s website and Twitter profile. Results 650 surgeons from 71 countries in five continents participated in the survey. Results depict the presence of technology enthusiasts and skeptics and surgeons' preference toward more classical decision-making aids like clinical guidelines, traditional training, and the support of their multidisciplinary colleagues. A lack of knowledge about several AI-related aspects emerges and is associated with mistrust. Discussion The trauma and emergency surgical community is divided into those who firmly believe in the potential of AI and those who do not understand or trust AI-enabled surgical decision-making aids. Academic societies and surgical training programs should promote a foundational, working knowledge of clinical AI
    corecore